A Hierarchical Bayesian Approach to Multi-Trait Clinical Quantitative Trait Locus Modeling

نویسندگان

  • Crispin M. Mutshinda
  • Neli Noykova
  • Mikko J. Sillanpää
چکیده

Recent advances in high-throughput genotyping and transcript profiling technologies have enabled the inexpensive production of genome-wide dense marker maps in tandem with huge amounts of expression profiles. These large-scale data encompass valuable information about the genetic architecture of important phenotypic traits. Comprehensive models that combine molecular markers and gene transcript levels are increasingly advocated as an effective approach to dissecting the genetic architecture of complex phenotypic traits. The simultaneous utilization of marker and gene expression data to explain the variation in clinical quantitative trait, known as clinical quantitative trait locus (cQTL) mapping, poses challenges that are both conceptual and computational. Nonetheless, the hierarchical Bayesian (HB) modeling approach, in combination with modern computational tools such as Markov chain Monte Carlo (MCMC) simulation techniques, provides much versatility for cQTL analysis. Sillanpää and Noykova (2008) developed a HB model for single-trait cQTL analysis in inbred line cross-data using molecular markers, gene expressions, and marker-gene expression pairs. However, clinical traits generally relate to one another through environmental correlations and/or pleiotropy. A multi-trait approach can improve on the power to detect genetic effects and on their estimation precision. A multi-trait model also provides a framework for examining a number of biologically interesting hypotheses. In this paper we extend the HB cQTL model for inbred line crosses proposed by Sillanpää and Noykova to a multi-trait setting. We illustrate the implementation of our new model with simulated data, and evaluate the multi-trait model performance with regard to its single-trait counterpart. The data simulation process was based on the multi-trait cQTL model, assuming three traits with uncorrelated and correlated cQTL residuals, with the simulated data under uncorrelated cQTL residuals serving as our test set for comparing the performances of the multi-trait and single-trait models. The simulated data under correlated cQTL residuals were essentially used to assess how well our new model can estimate the cQTL residual covariance structure. The model fitting to the data was carried out by MCMC simulation through OpenBUGS. The multi-trait model outperformed its single-trait counterpart in identifying cQTLs, with a consistently lower false discovery rate. Moreover, the covariance matrix of cQTL residuals was typically estimated to an appreciable degree of precision under the multi-trait cQTL model, making our new model a promising approach to addressing a wide range of issues facing the analysis of correlated clinical traits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods

The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...

متن کامل

A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo.

Markov chain Monte Carlo (MCMC) techniques are applied to simultaneously identify multiple quantitative trait loci (QTL) and the magnitude of their effects. Using a Bayesian approach a multi-locus model is fit to quantitative trait and molecular marker data, instead of fitting one locus at a time. The phenotypic trait is modeled as a linear function of the additive and dominance effects of the ...

متن کامل

Bayesian Partition Models for Identifying Expression Quantitative Trait Loci.

Expression quantitative trait loci (eQTLs) are genomic locations associated with changes of expression levels of certain genes. By assaying gene expressions and genetic variations simultaneously on a genome-wide scale, scientists wish to discover genomic loci responsible for expression variations of a set of genes. The task can be viewed as a multivariate regression problem with variable select...

متن کامل

Estimation of quantitative trait locus effects with epistasis by variational Bayes algorithms.

Bayesian hierarchical shrinkage methods have been widely used for quantitative trait locus mapping. From the computational perspective, the application of the Markov chain Monte Carlo (MCMC) method is not optimal for high-dimensional problems such as the ones arising in epistatic analysis. Maximum a posteriori (MAP) estimation can be a faster alternative, but it usually produces only point esti...

متن کامل

Bayesian quantitative trait locus mapping using inferred haplotypes.

We describe a fast hierarchical Bayesian method for mapping quantitative trait loci by haplotype-based association, applicable when haplotypes are not observed directly but are inferred from multiple marker genotypes. The method avoids the use of a Monte Carlo Markov chain by employing priors for which the likelihood factorizes completely. It is parameterized by a single hyperparameter, the fra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012